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An Accurate Determination of Dielectric Loss Effect in

Monolithic Microwave Integrated Circuits Including

Microstrip and Coupled Microstrip Lines

D. MIRSHEKAR-SYAHKAL

Abstract —For the first time, by a rigorous armfysis, the performance of

MIC planar transmission fines with Iossy substrates can be studied accu-

rately. The generaf structural shape chosen for the analysis includes

infinitely thin metallic strips embedded within the layers of homogeneous

dielectric substrates. The rigor of the analysis was guaranteed by the

assumption of the propagation of an electromagnetic hybrid wave (i.e.,

TE + TM) along tbe planar transmission lines. An efficient computation

was, however, achieved by implementing the spectral domain approach as

the basis for the analysis. To test the anafysis, phase constants, characteris-

tic impedances, and attenuations, due to dielectric losses, were computed

for microstrip and coupled microstrip lines. The results obtained were

compared with those given previously by the spectral domain analysis in

which dielectric losses were not included directly [1]. The comparison

showed an excellent agreement between the two theories for low-loss

substrates. However, for Iossy substrates the present method is more

accurate.

I. INTRODUCTION

A new generation of microwave integrated circuits, the so-

called “Monolithic Microwave Integrated Circuits” (MMIC), is

under development. In MMIC, the aim is to integrate as many

passive and active microwave components as possible on one

single chip, in order to achieve the highest degree of compactness.

This, of course, would be of great advantage where a large

number of repeated circuits is required. Examples of this can be

found, for instance, in active arrays of antenna.

Substrates used for MMIC are of the semiconductor type [2].

This is because the substrate should provide a ground for the

fabrication of the active elements, as well as the passive compo-

nents. Propagation of the electromagnetic waves through a semi-

conductor medium is usually subject to a large attenuation [3].

The loss of propagating energy in a semiconductor substrate is

mainly due to the finite resistivity of the medium. For example,

silicon can have resistivity varying between 100–1200 O. cm [3].

Therefore, substrates used in MIC with similar resistivities could

dissipate energy equal to or greater than the energy dissipated in

metallic parts, i.e., strips.

So far, the capability of the theories developed for computing

the dielectric loss of planar transmission lines have been limited

either by the assumption of the quasi-TEM waves propagation

[4], [5], or, in some cases, by the very crude plane-wave approxi-

mation [6]. The first accurate analysis of dielectric loss in which

the effect of dispersion was considered was introduced by
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Mirshekar-Syahkaf and Davies [1], [7]. In this general analysis, a

perturbation technique was developed in order to deal with

planar structures with multidielectnc layers leading to

(1)

where & and fio are the unperturbed (zero-loss) fields. In (l), 1

denotes the number of dielectric layers, c,, tan rSiand $ are the i ‘h

dielectric layer permittivity, loss tangent, and cross-sectional area,

and u and S represent the angular frequency ~d the-total

transmission-line cross-sectional area, respectively. E’. and HO are

determined through the genera&ed sp~ctraf domain technique. A

computer program providing EOand HO, and subsequently az, is

rdready available [8].

Though expression (1) can adequately describe the attenuation

of a mode along a planar transmission line for substrates with

small tan 8, the accuracy of (1) is not known. Especially in very

lossy dielectric substrates, it is not only the accuracy of ad that is

important, but the effect of dielectric loss on wave length and on

characteristic impedance can also be of considerable significance,

particularly where the coupling of two lines becomes a point of

interest.

To alleviate the shortcomings of earlier theories, the gener-

alized method developed in [1], [7] is further extended to include

a priori a complex dielectric constant. This new extension of the

generalized spectral domain technique is then examined by solv-

ing two common structures, microstrip and coupled microstnp,

taking different loss values for their substrates. Through this

examination, the accuracy of the perturbation equation (1) can be

examined.

II. llIEORX

A generic cross section of an arbitrary multistrip multidielec-

tric MIC planar transmission line is shown in Fig. l(a). The

metallic enclosure is the inevitable packaging cover, and, there-

fore, its effect on the propagation of the wave has to be counted

in the analysis. It is assumed that the dielectrics are homogeneous

and the thickness of the strips satisfies the relation

skin depth << strip thickness << dielectric thickness.

A good metallization for the strips, and the use of a good

conductor for the enclosure, allows the assumption of a perfect

conductor for the metallic parts. However, the loss due to imper-

fect conductors can be calculated through a perturbation expres-

sion given in [1]. For brevity, conductor loss analysis is excluded

from the following theory.

Considering the dielectric layers, the dielectric loss for each

homogeneous dielectric region can be represented by the imagin-

ary parts of a complex dielectric constant, given by

where

In the case of

tan 8, = o.
Due to the

c1=6; –j6:=c:(l– Jtm81)

taut?, = E;/c; .

any loss-free dielectric, of course, c, = e: and

mixed dielectric boundarv of the moblem. an

accurate analysis without the assumption of an electromagnetic

hybrid wave (i.e., TE + TM) is not possible. Based on this rigor-
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Fig. 1. (a) A general multidielectric multistrip planar structure, (b) Micro-

strip on lossy substrate, 2W = d = 0.5 mm, h = 19.5 mm, a = 10 mm, tan82 =

O, E,2 = 1 and C,I = 10. (c) Coupled microstrip on 10SSY substrate, 2W = d = 0.5

mm, h =19.5 mm, a =10 mm, s = 0.1 mm, tani$ = O, er2 =1, and Crl =10.

ous assumption, several techniques, developed to solve various

loss-free planar transmission-line problems, are already available

[7]. Due to the advantages offered, the generalized spectral do-

main approach will be extended in this paper [1], [7], [9].

Work on the spectral domain method with many examples can

be found in [7], and so, to economize on space, in the following

some details are omitted.

To start with, a complex propagation constant

r=a+jp

is introduced where a represents the attenuation constant due to

the overall dielectric losses and ~ denotes the phase constant.

Obviously, in the absence of dielectric loss a = O, and the prob-

lem turns into the form previously discussed in full in [1], [7].

The propagation of a hybrid mode along the line requires

nonzero longitudinal fields. These fields in each dielectric region

can be obtained by means of two independent potential functions

through expressions [7], [9]

E7,=-*+y(x,y)e-’

::,=-~+y(x,y)e-rz
(2)

(3)

where

k,? = (J2prC,

and z’represents the i ‘h dielectric region. Equations (2) and (3) are

similar to those expressed for the loss-free condition in [1], [7],

the only difference being in the complex propagation constant.

Thus the finite Fourier transform [7]

Jfe.h)=,+”+$@h)(x,y)eJ~..dx
—a

(4)

can be performed to reduce the two-dimensionaf Helmholtz

equation into the one-dimensiond equation,

(5)

where

Y,:.=%- rz– k,?

and an in (4) is generally expressed by

a. = n77/2a, n = 0,1,2,...

where 2a is the enclosure width. In (5), -yi,~ is a complex function

and it turns into a pure imaginary or real function if the dielec-

trics are considered lossless [1], [7].

The solution to (5) is straightforward and can be followed as

quoted in [7]. However, it is worth noting that, in this problem,

the arguments of sinh and cosh appearing in the solution of (5)

are complex.

Having derived the potential functions ~}’ h) in the spectral

domain, one can now find all the field components in this

domain. The use of boundary conditions at the dielectric inter-

faces results in a system of equations in the Fourier domain

relating the x and z components of electric fields and currents. A

matrix representation of these equations is given by

[G][~]=[fi] (6)

where [~] and [ fl] are the matrices of currents and electric fields

at the interfaces between the dielectrics and the metallic strips.

For transmission lines with a single layer of strips and severaf

layers of dielectrics, (6) reduces to

[

G1,l(n, I’) G1,2(n, r)

G2,,(n, r) G2,2(n, r)
] [;]=[!=] (7,

where ~X, ~Z, ~X, and ~z are the Fourier transforms of the fields

and currents at the strip-to-dielectric interface. The [ G] matrix

elements in (7) can be generated by a procedure described in [7],

[10]. Notice that in loss-free conditions [G] is a real matrix.

To obtain 17 from (7), fields or currents are expanded first in

terms of some appropriate basis functions. Then Galerkin’s

method, together with Parseval’s identity, are applied, resulting in

a set of homogeneous equations whose nontrivial solution is r.

Having found 17= a + j/1, a reverse strategy obtains all the fields

in the Fourier domain. Consequently, parameters such as char-

acteristic impedance requiring a knowledge of fields can be easily

computed.

HI. NUMERICAL RESULTS

So far, in Section II a theory has been discussed which is very

similar to that developed in [7], but is an extension of it in which

the finaf matrix is now complex. The zero of the determinant of

the finaf matrix, i.e., r = a + j~, may be traced by various

algorithms written to calculate the complex roots of a function.

In the search for an efficient technique, the quadrature technique

of Muller [11] seems very suitable. Since root deflation is per-

formed by Muller’s algorithm for functions of several roots, tl.iis

technique is bound to lose accuracy as it embarks on finding a

new root, It is possible, however, to compute the physical solu-

tion first. Alternatively, one can define a very stringent accuracy

criterion for the first root, so that as the process of root-finding

progresses, if the number of roots are not very large, the accuracy

for the desired root would fall within the limit of the predefine

accuracy. By taking precautions, the problem of error caused by

the deflation procedure can be controlled.
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The special examples treated by the theory presented in Sec-

tion II are the microstrip and coupled microstrip, shown in Figs.

l(b) and l(c), respectively, which both have considerable applica-

tions. In both cases, J, is taken as the only current existing on he

strip and the role of JX is ignored, This approximation is the

“zero-order solution,” and would be adequate for many engineer-

ing problems, provided that the choice of JZ is close to the

physical distribution. For microstrip, a function derived in [12]

and examined by several authors [7], [9], which seems an ade-

quate approximation for J=, is given by

3

(w
+= f(x)=+ 1+; , lx\ <w. (8)

For the coupled-strip case, expression (8) is adopted for the

current distribution on each strip and, depending upon the mode

of operation, the following forms are valid:

{

~= f(x–s– w), S< X< S+2W
z

f(x+s+w), –S>X>– S–2W
(9)

for the even mode and

{

~= f(x–s–w), S< X< S+2W
z

–f(x+s+w),
(lo)

—S>.X>-S-2W

for the odd mode. By definition, in a coupled rnicrostrip, the

mode is called even when E= and HZ are even, and odd functions

of x, respectively, and the mode is called odd when E: and H: are

odd and even functions of x, respectively. Care should be taken,

however, in the coupled strip configuration that the functions

introduced by (9) and (10) remain acceptable when the strips are

not very close, Otherwise, either a better physicaf representation

of the currents is needed, or the currents have to be approximated

through a set of basis functions [1], [7]. In the approximate form

for J=, singularities due to the edge conditions are not included.

In fact, in the zero-order solution, a very accurate treatment of

the edge condition, does not contribute significantly to the accu-

racy of the solution. By contrast, calculation of the conductor

loss is very sensitive to the function representing the edge condi-

tion [1], [7].

We wish to observe the effect of a lossy dielectric on the

characteristic impedance. It is customary to choose the imped-

ance definitions

Z = 2 P/I: (11)

z ,,0 = P/I: (12)

as the characteristic impedance for the microstrip and the cou-

pled microstrip, respectively [1]. Subscripts e and o refer to even

and odd modes of operation. 1, in (11) and (12) is the totaf

current on a strip given by

I:= J+wI=(x)dx (13)
—w

and P is the transmitted power given by

P=$Re//~X H*.& (14)
s

where S is the cross-sectionaf area of the line.

Based on the theory of Section II and the approximation made

in this Section, a computer program has been developed to

compute attenuation “due to the dielectric loss, phase constant,

and characteristic impedance of microstnp and coupled micro-

strip. Some results produced by this program are shown in Figs.

2–5, where tan i31 is assumed to be a parameter decreasing from a

large value 1.0 to a small value 2 X 10-4. In the given examples, it
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Fig. 2. Characterkc impedance and normalized wavelength of the funda-

mental mode of the nucrostrip shown in Fig. 1 (b),

is assumed that the rerd part of the dielectric permittivity is

constant; c~ = (,1. co = Constant. This is not, however, an unre-

alistic assumption. For instance, in silicon substrates, as reported

the loss tangent and

i th layer. Therefore,

in [3], c,1 remains unchanged over the microwave frequency ;

range. In semiconductor substrates, due to the dominant nature

of the ohmic loss, the relationship between

the frequency is approximately given by

where u, is the material conductivity of the

to obtain any parameter from Figs. 2–5, the tan 81 corresponding

to the frequency of operation first must be determined.

Examination of h /iO in Figs. 2, 3, and 4 shows that the

normalized wavelength asymptotically approaches that obtained

under the loss-free condition (broken line). As would be ex-

pected, for tan 81<0.1, the normalized wavelengths were found

to be virtually equal to those obtained by the computer programs

ZERO 1 described in [8].

The curves in Figs. 2, 3, and 4, representing the characteristic

impedances, illustrate the same behavior as explained for the

normalized wavelengths. In these figures, a decrease in the char-

acteristic impedance values with increase in tan 81 is apparent.

This phenomenon has indeed been observed in experimental

studies on silicon used as a microstrip substrate [3].

The dielectric loss for the microstrip in Fig. 5 demonstrates the

close relationship existing between the present technique and the

perturbation method (1) at small values of tan 81. Very similar
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mode of the coupled microstrip shown in Fig. 1 (c).

results were also achieved for the coupled microstrips which are

not shown in this paper.

Computations showed that, for substrates with tan i31<0.1, the

perturbation method can be satisfactorily used for the analysis of

dielectric loss in @e planar transmission lines fabricated from

low-loss dielectrics.

As a further comparison, parameters A/&, Z, and ad for the
microstnp’ line were obtained by Schneider’s quasi-TENf tech-

nique [4], [13] and displayed in Figs. 2 and 5. As expected, at low

frequency and for small tan 81, the quasi~TEM results are in good

agreement with the Present techfitiue restits. ‘owever~ at’@
frequency or for large tan 81, the quasi-TEM method cannot be

regarded as accurate.

IV. CONCLUSIONS

Using the generalized spectral domain technique, a rigorous
analysis for the effect of dielectric loss in planar transmission

lines with lossy substrates is given. In this analysis, a complex

propagation constant is obtained with the usual phase and atten~

uation components. AS the test exampks, a microstrip and a

coupled micro$rip were treated by the theory developed. The

computed results for the wavelength and the characteristic im-

pedance were compared with those obtained through the spectral

domain technique developed for the lossless planar transmission

lines. The dielectric losses were also contrasted with those com-
puted by means of a perturbation method. These comparative

studies showed that, for substrates of small dielectric loss (around

tan 61< 0.1), the theories were in excellent agreement. However,

,
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for lossy dielectric substrates, the theory developed in this paper

has better accuracy and is clearly preferred,

In the results obtained for the microstrip and the coupled

microstrip, the lowest order of accuracy, “zero order”, was con-

sidered for the solutions. Nevertheless, it is not too difficult to

achieve a higher degree of accuracy by increasing the order of the

final matrix. This can be accomplished by simply expanding the

currents or the fields in terms of appropriate basis functions like

those, for instance, in [1].

The computer programs developed to generate the quoted

results are in FORTRAN and are available by request.
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KATSUMI FUKUMOTO, MASAMITSU NAKAJIMA, MEMBER,

IEEE, AND JUN-ICHI IKENOUE

Abstract —This paper shows that the characteristics of oscillators can be

phenomenologically expressed by a polynomial function of freqnency aud

amplitude, provided the output signaf is nearly sinusoidal, especially at
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microwave frequency. A method is presented of determining the coeffi-

cients of the polynomial from several points on the Rieke diagram, with

two examples being shown. The characteristics of oscillators can conse-

quently be represented by several parameters, as in tbe case of electron

tubes and transistors, so that the design of an oscillator circuit may become

easier with the aid of an electronic computer.

1, INTRODUCTION

So far, extensive studies have been performed on oscillator

characterization. An important contribution was made by van der

Pol. Since then, almost all studies on oscillators have been based

on his oscillator model. It appears, however, that few have

investigated the oscillator model itself.

The purpose of this paper is to provide a new mathematical

oscillator model. It will be shown that the nonlinear admittance

of oscillators can be phenomenologically expressed by a poly-

nomial function of frequency and amplitude, provided the output

signal is nearly sinusoidal, especially at microwave frequency. A

method is presented concerning how to determine the coefficients

of the polynomial from severaf points on the Rieke diagram, and

two examples will be shown. Although much time is consumed to

draw diagrams, the Rieke diagram has so far been used to express

the characteristics, especially of microwave oscillators [1], [2].

This is because the Rieke diagram has advantages since the

equi-power and equi-frequency loci are geometrically plotted on

the Smith chart, and since the load admittance is represented

within a circle of finite extent.

In this paper, a mathematical expression of oscillator cha-

actenstics is proposed instead of the geometrical expression, so

that tlhe characteristics of oscillators may be represented by

several parameters, as in the case of electron tubes and transis-

tors. The design of oscillator circuits will then become easier with

the aicl of an electronic computer.

H. MATHEMATICAL EXPRESSION OF NONLI~AR

ADMITTANCES

A. Van der Pol’s Oscillator

Van der Pol gave a basic mathematical expression of oscillator

characteristics allowing for nonlinearity. If his formulation is

viewed from the standpoint of the fundamental oscillation

frequency, the oscillator admittance can be represented by a

function of frequency and voltage amplitude squared as [3]

Y(J0,1V12) = –GO+GI,IV12+ jB@Aw (1)

where AQ = o – QO, and WO is the center frequency. 1 As is ex-

plained in the next section, the Rieke diagram of (1) is repre-

sented in the form of Fig. 2(b), while that of an existing oscillator

is of Fig. 9. These two Rieke diagrams are different from each

other chiefly in the following ways: i) Load locus on which

maximum output power is generated is a circle in the case of van

der Pol’s oscillator, while an existing oscillator produces the

maximum power at a single point on the Rieke diagram. ii) The

Rieke diagram of van der Pol’s oscillator is symmetric, while that

of an existing oscillator is usually asymmetric.

B. Generalization of Oscillator Admittance

Fig. 1 shows an equivalent circuit of coupling of a microwave

oscillator to a load. The effect of coupling strength of the

I The osculation frequency when a matched load is connected to the line.
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