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An Accurate Determination of Dielectric Loss Effect in
Monolithic Microwave Integrated Circuits Including
Microstrip and Coupled Microstrip Lines

D. MIRSHEKAR-SYAHKAL

Abstract —For the first time, by a rigorous analysis, the performance of
MIC planar transmission lines with lossy substrates can be studied accu-
rately. The general structural shape chosen for the analysis includes
infinitely thin metallic strips embedded within the layers of homogeneous
dielectric substrates. The rigor of the analysis was guaranteed by the
assumption of the propagation of an electromagnetic hybrid wave (i.e.,
TE+TM) along the planar transmission lines. An efficient computation
was, however, achieved by implementing the spectral domain approach as
the basis for the analysis. To test the analysis, phase constants, characteris-
tic impedances, and attenuations, due to dielectric losses, were computed
for microstrip and coupled microstrip lines. The results obtained were
compared with those given previously by the spectral domain analysis in
which dielectric losses were not included directly [1]. The comparison
showed an excellent agreement between the two theories for low-loss
substrates. However, for lossy substrates the present method is more
accurate.

1. INTRODUCTION

A new generation of microwave integrated circuits, the so-
called “Monolithic Microwave Integrated Circuits” (MMIC), is
under development. In MMIC, the aim is to integrate as many
passive and active microwave components as possible on one
single chip, in order to achieve the highest degree of compactness.
This, of course, would be of great advantage where a large
number of repeated circuits is required. Examples of this can be
found, for instance, in active arrays of antenna.

Substrates used for MMIC are of the semiconductor type [2].
This is because the substrate should provide a ground for the
fabrication of the active elements, as well as the passive compo-
nents. Propagation of the electromagnetic waves through a semi-
conductor medium is usually subject to a large attenuation [3].
The loss of propagating energy in a semiconductor substrate is
mainly due to the finite resistivity of the medium. For example,
silicon can have resistivity varying between 100-1200 € -cm [3].
Therefore, substrates used in MIC with similar resistivities could
dissipate energy equal to or greater than the energy dissipated in
metallic parts, i.e., strips.

So far, the capability of the theories developed for computing
the dielectric loss of planar transmission lines have been limited
cither by the assumption of the quasi-TEM waves propagation
{4], [5], or, in some cases, by the very crude plane-wave approxi-
mation [6]. The first accurate analysis of dielectric loss in which
the effect of dispersion was considered was introduced by
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Mirshekar-Syahkal and Davies {1], [7]. In this general analysis, a
perturbation technique was developed in order to deal with
planar structures with multidielectric layers leading to

I
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where EO and ﬁo are the unperturbed (zero-loss) fields. In (1), 7
denotes the number of dielectric layers, ¢,, tan8; and S, are the i ™
dielectric layer permittivity, loss tangent, and cross-sectional area,
and « and § represent the angular frequency and the_total
transmission-line cross-sectional area, respectively. E, and H; are
determined through the generalized spectral domain technique. A
computer program providing E, and H, and subsequently a, is
already available [8].

Though expression (1) can adequately describe the attentuation
of a mode along a planar transmission line for substrates with
small tand, the accuracy of (1) is not known. Especially in very
lossy dielectric substrates, it is not only the accuracy of a,, that is
important, but the effect of dielectric loss on wave length and on
characteristic impedance can also be of considerable significance,
particularly where the coupling of two lines becomes a point of
interest.

To alleviate the shortcomings of earlier theories, the gener-
alized method developed in [1], [7] is further extended to include
a priori a complex dielectric constant. This new extension of the
generalized spectral domain technique is then examined by solv-
ing two common structures, microstrip and coupled microstrip,
taking different loss values for their substrates. Through this
examination, the accuracy of the perturbation equation (1) can be
examined.

II. THEORY

A generic cross section of an arbitrary multistrip multidielec-
tric MIC planar transmission line is shown in Fig. 1(a). The
metallic enclosure is the inevitable packaging cover, and, there-
fore, its effect on the propagation of the wave has to be counted
in the analysis. It is assumed that the diclectrics are homogeneous
and the thickness of the strips satisfies the relation

skin depth << strip thickness < dielectric thickness.

. A good metallization for the strips, and the use of a good
conductor for the enclosure, allows the assumption of a perfect
conductor for the metallic parts. However, the loss due to imper-
fect conductors can be calculated through a perturbation expres-
sion given in [1]. For brevity, conductor loss analysis is excluded
from the following theory.

Considering the dielectric layers, the dielectric loss for each
homogeneous dielectric region can be represented by the imagin-
ary parts of a complex dielectric constant, given by

¢, =€/~ je/ =¢/(1~ jtan,)
where
tand, =€/’ /¢..

In the case of any loss-free dielectric, of course, ¢,=¢/ and
tand, = 0.

Due to the mixed dielectric boundary of the problem, an
accurate analysis without the assumption of an electromagnetic
hybrid wave (i.e., TE+TM) is not possible. Based on this rigor-

0018-9480,83 /1100-950$01.00 ©1983 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 11, NOVEMBER 1983 951

__..1
~
n
&
o

o
©
3
S
E |
:
N
AN
R SR
o
o
©
]
ES
AN

(b)

Fig. 1. (8) A general multidielectric multistrip planar structure. (b) Micro-
strip on lossy substrate, 2w = d = 0.5 mm, # =19.5 mm, ¢ =10 mm, tan 8=
0,€,5=1 and ¢,y =10. (c) Coupled microstrip on lossy substrate, 2w = d = 0.5
mm, /=195 mm, ¢ =10 mm, s = 0.1 mm, tan8, =0, €,, =1, and ¢,; =10.

ous assumption, several techniques, developed to solve various
loss-free planar transmission-line problems, are already available
[7]. Due to the advantages offered, the generalized spectral do-
main approach will be extended in this paper [1], [7], [9).

Work on the spectral domain method with many examples can
be found in [7], and so, to economize on space, in the following
some details are omitted.

To start with, a complex propagation constant

'=a+j8

is introduced where a represents the attenuation constant due to
the overall dielectric losses and B denotes the phase constant.
Obviously, in the absence of dielectric loss a =0, and the prob-
lem turns into the form previously discussed in full in [1], [7].

The propagation of a hybrid mode along the line requires
nonzero longitudinal fields. These fields in each dielectric region
can be obtained by means of two independent potential functions
through expressions [7], [9]

k2 + I‘2
E, =~ (x,y)e ™ (@)
k2 + I‘2
H,,=———y"(x,p)e " (3)
where
k= wue,

and i represents the i dielectric region. Equations (2) and (3) are
similar to those expressed for the loss-free condition in [1], [7],
the only difference being in the complex propagation constant.
Thus the finite Fourier transform [7]

~ +a
V= [ Y (x, y)ern o

can be performed to reduce the two-dimensional Helmholtz
equation into the one-dimensional equation.

3P .
FREAZAN (5)

where

V=0 =Tk
and a,, in (4) is generally expressed by
n=0,1,2,---

where 2a is the enclosure width. In (5), v; , is a complex function
and it turns into a pure imaginary or real function if the dielec-
trics are considered lossless {1], [7].

The solution to (5) is straightforward and can be followed as
quoted in [7]. However, it is worth noting that, in this problem,
the arguments of sinh and cosh appearing in the solution of (5)
are complex.

Having derived the potential functions ¥{*" in the spectral
domain, one can now find all the field components in this
domain. The use of boundary conditions at the dielectric inter-
faces results in a system of equations in the Fourier domain
relating the x and z components of electric fields and currents. A
matrix representation of these equations is given by

(61171 - £] ©)
where [J] and [ E] are the matrices of currents and electric fields
at the interfaces between the diclectrics and the metallic strips.
For transmission lines with a single layer of strips and several
layers of dielectrics, (6) reduces to

G1,1(n,F) Gl,z(n,l‘) j)L _ Ez
e I e g I )

z X

a,=nw/2a,

where E,, E,, J,, and J, are the Fourier transforms of the fields
and currents at the strip-to-dielectric interface. The [G] matrix
elements in (7) can be generated by a procedure described in [7],
[10]. Notice that in loss-free conditions [G] is a real matrix.

To obtain T from (7), fields or currents are expanded first in
terms of some appropriate basis functions. Then Galerkin’s
method, together with Parseval’s identity, are applied, resulting in
a set of homogencous equations whose nontrivial solution is T'.
Having found ' = a + jB, a reverse strategy obtains all the fields
in the Fourier domain. Consequently, parameters such as char-
acteristic impedance requiring a knowledge of fields can be easily
computed.

III. NUMERICAL RESULTS

So far, in Section II a theory has been discussed which is very
similar to that developed in [7], but is an extension of it in which
the final matrix is now complex. The zero of the determinant of
the final matrix, ie, I'=a+ j8, may be traced by various
algorithms written to calculate the complex roots of a function,
In the search for an efficient technique, the quadrature technique
of Muller [11] seems very suitable. Since root deflation is per-
formed by Muller’s algorithm for functions of several roots, this
technique is bound to lose accuracy as it embarks on finding a
new root. It is possible, however, to compute the physical solu-
tion first. Alternatively, one can define a very stringent accuracy
criterion for the first root, so that as the process of root-finding
progresses, if the number of roots are not very large, the accuracy
for the desired root would fall within the limit of the predefined
accuracy. By taking precautions, the problem of error caused by
the deflation procedure can be controlled.
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The special examples treated by the theory presented in Sec-
tion II are the microstrip and coupled microstrip, shown in Figs.
1(b) and 1(c), respectively, which both have considerable applica-
tions. In both cases, J, is taken as the only current existing on the
strip and the role of J, is ignored. This approximation is the
“zero-order solution,” and would be adequate for many engineer-
ing problems, provided that the choice of J, is close to the
physical distribution. For microstrip, a function derived in [12]
and examined by several authors [7], [9], which seems an ade-
quate approximation for J,, is given by

L=t =g (E) wen©

For the coupled-strip case, expression (8) is adopted for the
current distribution on each strip and, depending upon the mode
of operation, the following forms are valid:

X—s—w), <x<s+2w
= f( ) s<x<s ©)
flx+s+w), —s>x>=—5—2w
for the even mode and
xX—s—w), s<x<s+2
51 ) Y o)
—f(x+s+w), —s>x>—5—2w

for the odd mode. By definition, in a coupled microstrip, the
mode is called even when E, and H, are even, and odd functions
of x, respectively, and the mode is called odd when E_ and H. are
odd and even functions of x, respectively. Care should be taken,
however, in the coupled strip configuration that the functions
introduced by (9) and (10) remain acceptable when the strips are
not very close. Otherwise, either a better physical representation
of the currents is needed, or the currents have to be approximated
through a set of basis functions [1], [7]. In the approximate form
for J,, singularities due to the edge conditions are not included.
In fact, in the zero-order solution, a very accurate treatment of
the edge condition, does not contribute significantly to the accu-
racy of the solution. By contrast, calculation of the conductor
loss is very sensitive to the function representing the edge condi-
tion [1], [7].

We wish to observe the effect of a lossy dielectric on the
characteristic impedance. It is customary to choose the imped-
ance definitions

Z=2P/I?
Z,,=P/T;

(11)
(12)
as the characteristic impedance for the microstrip and the cou-
pled microstrip, respectively [1]. Subscripts e and o refer to even

and odd modes of operation. 7, in (11) and (12) is the total
current on a strip given by

+w
1:=f L(x)dx (13)
and P is the transmitted power given by
_1 e T %
P—2ReffSE><H & (14)

where S is the cross-sectional area of the line.

Based on the theory of Section II and the approximation made
in this Section, a computer program has been developed to
compute attentuation'due to the dielectric loss, phase constant,
and characteristic impedance of microstrip and coupled micro-
strip. Some results produced by this program are shown in Figs.
2-5, where tan §, is assumed to be a parameter decreasing from a
large value 1.0 to a small value 2X 10~ “, In the given examples, it
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Fig. 2. Characteristic impedance and normalized wavelength of the funda-

mental mode of the microstrip shown in Fig. 1 (b).

is assumed that the real part of the dielectric permittivity is
constant; €] = ¢,,- €, = Constant. This is not, however, an unre-
alistic assumption. For instance, in silicon substrates, as reported
in [3], €,; remains unchanged over the microwave frequency
range. In semiconductor substrates, due to the dominant nature
of the ohmic loss, the relationship between the loss tangent and
the frequency is approximately given by

g,

tand, = —
WE;

where o, is the material conductivity of the ith layer. Therefore,
to obtain any parameter from Figs. 2-5, the tan 8, corresponding
to the frequency of operation first must be determined.

Examination of A /A, in Figs. 2, 3, and 4 shows that the
normalized wavelength asymptotically approaches that obtained
under the loss-free condition (broken line). As would be ex-
pected, for tand, < 0.1, the normalized wavelengths were found
to be virtually equal to those obtained by the computer programs
ZERO 1 described in [8].

The curves in Figs. 2, 3, and 4, representing the characteristic
impedances, illustrate the same behavior as explained for the
normalized wavelengths. In these figures, a decrease in the char-
acteristic impedance values with increase in tané, is apparent.
This phenomenon has indeed been observed in experimental
studies on silicon used as a microstrip substrate [3].

The dielectric loss for the microstrip in Fig. 5 demonstrates the
close relationship existing between the present technique and the
perturbation method (1) at small values of tan8,. Very similar
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Fig. 3. Characteristic impedance and normalized wavelength of the
mode of the coupled microstrip shown in Fig. 1 ().

even

results were also achieved for the coupled microstrips which are
not shown in this paper.

Computations showed that, for substrates with tan 8, < 0.1, the
perturbation method can be satisfactorily used for the analysis of
diclectric loss in the planar transmission lines fabricated from
low-loss dielectrics.

As a further comparison, parameters A/Ay, Z, and a,, for the
microstrip line were obtained by Schneider’s quasi-TEM tech-
nique [4], [13] and displayed in Figs. 2 and 5. As expected, at low
frequency and for small tand;, the quasi-TEM results are in good
agreement with the present technique results. However, at high
frequency or for large tan$,, the quasi-TEM method cannot be
regarded as accurate.

IV. CONCLUSIONS

Using the generalized spectral domain technique, a rigorous
analysis for the effect of dielectric loss in planar transmission
lines with lossy substrates is given. In this analysis, a complex
propagation constant is obtained with the usual phase and atten-
uation components. As the test examples, a microstrip and a
coupled microstrip were treated by the theory developed. The
computed results for the wavelength and the characteristic im-
pedance were compared with those obtained through the spectral
domain technique developed for the lossless planar transmission
lines. The dielectric losses were also contrasted with those com-
puted by means of a perturbation method. These comparative
studies showed that, for substrates of small dielectric loss (around
tand, < 0.1), the theories were in excellent agreement. However,
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for lossy dielectric substrates, the theory developed in this paper
has better accuracy and is clearly preferred.

In the results obtained for the microstrip and the coupled
microstrip, the lowest order of accuracy, “zero order”, was con-
sidered for the solutions. Nevertheless, it is not too difficult to
achieve a higher degree of accuracy by increasing the order of the
final matrix. This can be accomplished by simply expanding the
currents or the fields in terms of appropriate basis functions like
those, for instance, in [1].

The computer programs developed to generate the quoted
results are in FORTRAN and are available by request.
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Mathematical Representation of Microwave Oscillator
Characteristics by Use of the Rieke Diagram
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1EEE, AND JUN-ICHI IKENOUE

Abstract —This paper shows that the characteristics of oscillators can be
phenomenologically expressed by a polynomial function of frequency and
amplitude, provided the output signal is nearly sinusoidal, especially at
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microwave frequency. A method is presented of determining the coeffi-
cients of the polynomial from several points on the Rieke diagram, with
two examples being shown. The characteristics of oscillators can conse-
quently be represented by several parameters, as in the case of electron
tubes and transistors, so that the design of an oscillator circuit may become
easier with the aid of an electronic computer.

I. INTRODUCTION

So far, extensive studies have been performed on oscillator
characterization. An important contribution was made by van der
Pol. Since then, almost all studies on oscillators have been based
on his oscillator model. It appears, however, that few have
investigated the oscillator model itself.

The purpose of this paper is to provide a new mathematical
oscillator model. It will be shown that the nonlinear admittance
of oscillators can be phenomenologically expressed by a poly-
nomial function of frequency and amplitude, provided the output
signal is nearly sinusoidal, especially at microwave frequency. A
method is presented concerning how to determine the coefficients
of the polynomial from several points on the Rieke diagram, and
two examples will be shown. Although much time is consumed to
draw diagrams, the Rieke diagram has so far been used to express
the characteristics, especially of microwave oscillators [1], [2].
This is because the Rieke diagram has advantages since the
equi-power and equi-frequency loci are geometrically plotted on
the Smnith chart, and since the load admittance is represented
within a circle of finite extent.

In this paper, a mathematical expression of oscillator char-
acteristics is proposed instead of the geometrical expression, so
that the characteristics of oscillators may be represented by
several parameters, as in the case of electron tubes and transis-
tors. The design of oscillator circuits will then become easier with
the aid of an electronic computer.

II. MATHEMATICAL EXPRESSION OF NONLINEAR
ADMITTANCES

A. Van der Pol’s Oscillator

Van der Pol gave a basic mathematical expression of oscillator
characteristics allowing for nonlinearity. If his formulation is
viewed from the standpoint of the fundamental oscillation
frequency, the oscillator admittance can be represented by a
function of frequency and voltage amplitude squared as [3]

Y(J@.VI?) == Go+ G [V|* + jB,Aw (1)

where Aw = w — wy, and w, is the center frequency.! As is ex-
plained in the next section, the Rieke diagram of (1) is repre-
sented in the form of Fig. 2(b), while that of an existing oscillator
is of Fig. 9. These two Rieke diagrams are different from each
other chiefly in the following ways: i) Load locus on which
maximum output power is generated is a circle in the case of van
der Pol’s oscillator, while an existing oscillator produces the
maximum power at a single point on the Ricke diagram. ii) The
Rieke diagram of van der Pol’s oscillator is symmetric, while that
of an existing oscillator is usually asymmetric.

B. Generalization of Oscillator Admittance

Fig. 1 shows an equivalent circuit of coupling of a microwave
oscillator to a load. The effect of coupling strength of the

1The oscillation frequency when a matched load is connected to the line.
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